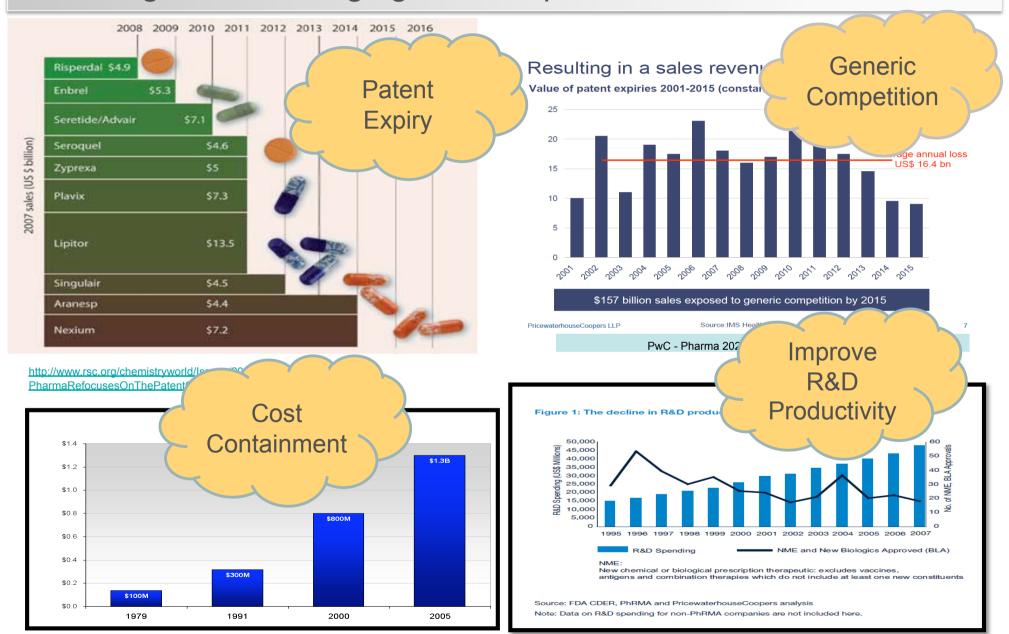
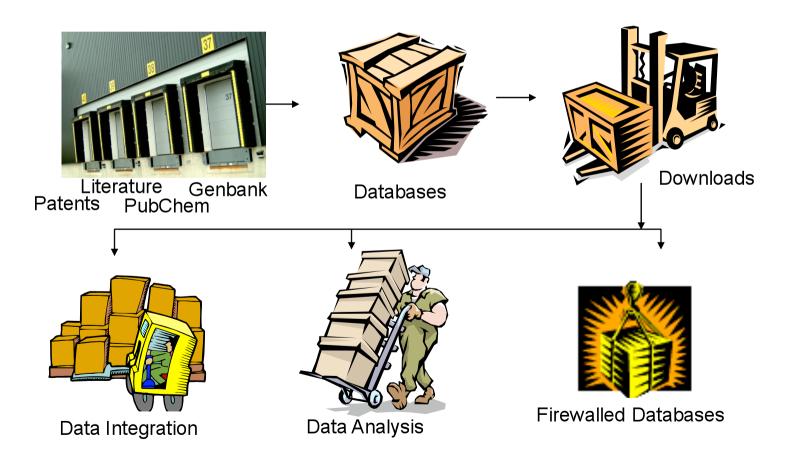


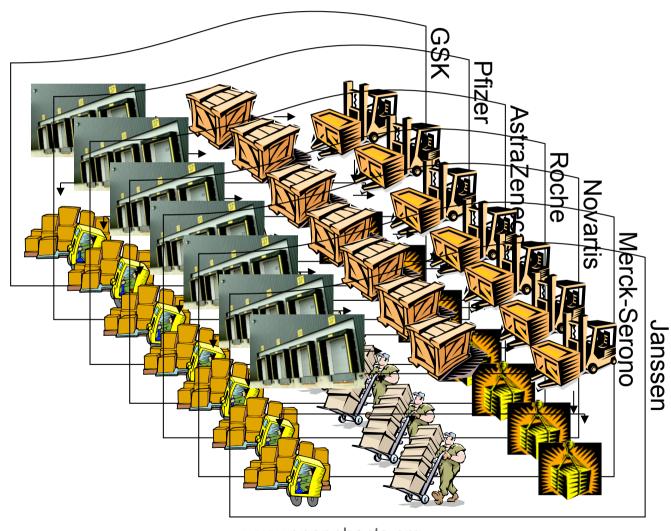
Open PHACTS Linked Open Data for Drug Discovery


Herman van Vlijmen – Janssen Pharmaceutica Orri Erling – OpenLink Software

Linked Open Data congres, Hilversum, 25 June 2014

The Pharma Industry Challenges in a Changing Landscape

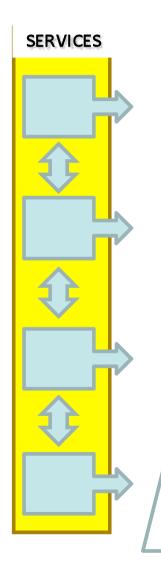



Public Domain Drug Discovery Data:

Pharma are accessing, processing, storing & re-processing

We are all doing this many times.....

www.openphacts.org


The Open PHACTS Project

- Create a semantic integration hub ("Open Pharmacological Space")
- Delivering services to support on-going drug discovery programs in pharma and public domain
- Not just another project; Leading academics in semantics, pharmacology and informatics, driven by solid industry business requirements
- ❖ 16 academic partners, 8 pharmaceutical companies, 4 biotechs
- Work split into clusters:
 - Technical Build: Create the technology
 - Scientific Drive: Develop use cases and exemplar applications
 - Community & Sustainability: Engage community and build the future

OPS Components

Application (Knowledge)

Fact Visualisation e.g. Target Dossiers; SAR Visualisation Define needs; Design algorithms; Develop "plug-in" architectures?

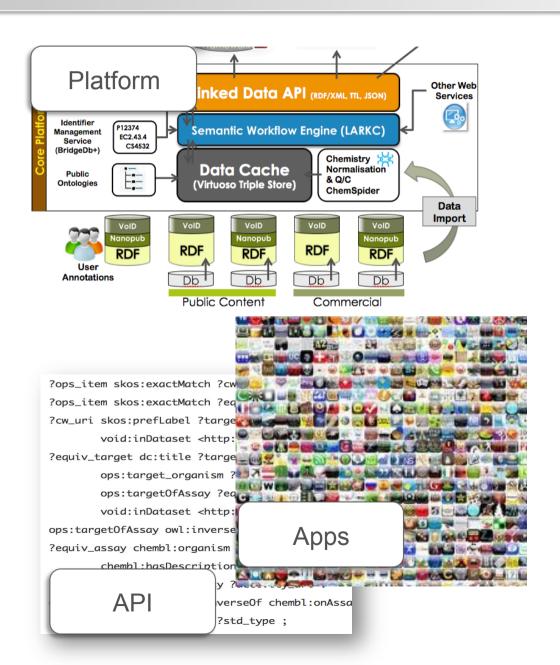
Assertions

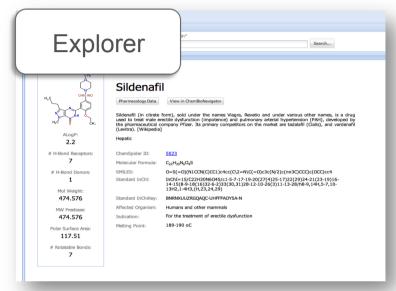
e.g. Gene-to-Disease; Compound-to-Target; Compound-to-ADR Define needs; Contribute algorithms & develop tools (e.g. text mining); Enhance existing approaches

Standards

Ontology/taxonomy; Minimum information guide; Dictionaries; Interchange mapping Support existing standards; Drive new DD-relevant ontologies;
Work with publishers

Data


Targets; Chemistry;
Pharmacology; Literature; Patents


Def ining needs; Knowledge; Data Contribution

IMI: The Innovative Medicines Initiative

- Biggest public-private partnership in area of medicine
- Collaboration between European
 Commission and European
 Federation of Pharmaceutical
 Industries and Associations (EFPIA)
- Promotion of medical innovation in Europe
- Tackle key bottlenecks
- Recognises "in kind" contributions
- Focus on key problems
 - Efficacy, Safety, Education & Training, Knowledge Management

Project Partners

Universität Wien

Technical University of Denmark

University of Hamburg, Center for **Bioinformatics**

BioSolveIT GmBH

Consorci Mar Parc de Salut de Barcelona

Leiden University Medical Centre

Royal Society of Chemistry

Vrije Universiteit Amsterdam

Spanish National Cancer Research Centre

University of Manchester

Maastricht University

Agnowledge

University of Santiago de Compostela

Rheinische Friedrich-Wilhelms-

Universität Bonn

Netherlands Bioinformatics Centre

Swiss Institute of Bioinformatics

ConnectedDiscovery

EMBL-European Bioinformatics Institute

OpenLink Software

Pfizer

Novartis

Merck Serono

H. Lundbeck A/S

Eli Lillv

Janssen

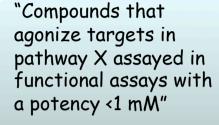
AstraZeneca

GlaxoSmithKline

Esteve

Associate Partners

Implementing Translational Science


A use-case driven approach, focussed on delivery for the real world

- Main architecture, technical implementation and primary capabilities driven by a set of prioritised research questions
- Based on the main research questions define prioritised data sources
- Develop three Exemplars to demonstrate the capabilities of the Open PHACTS System and to define interfaces and input/output standards

What do we need?

"All oxidoreductase inhibitors active <100nM in both human and mouse"

"Find me compounds that inhibit targets in NFkB pathway assayed in only functional assays with a potency <1 µM"

ChEMBL

DrugBank

Gene Ontology

Wikipathways

GeneGo

ChEBI

Uniprot

UMLS

GVKBio

ConceptWiki

ChemSpider

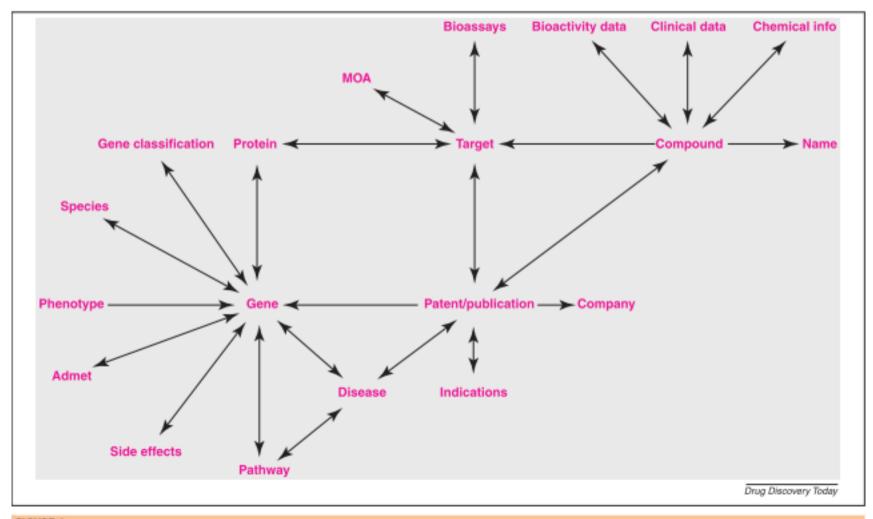
TrialTrove

TR Integrity

The Open PHACTS infrastructure can support many different domains & questions

TABLE 1

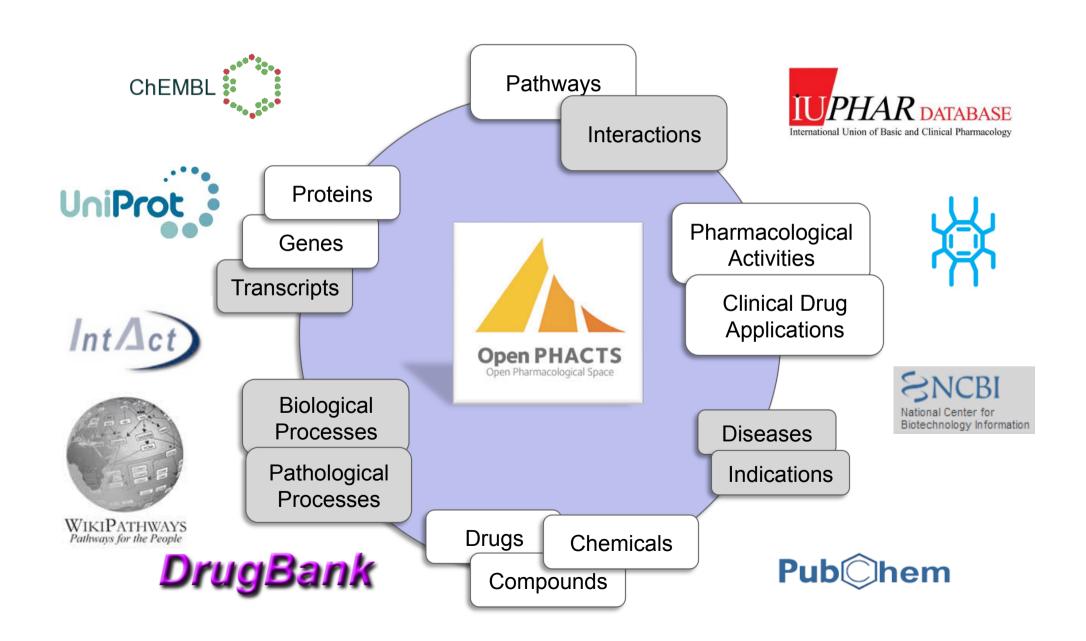
The top 20 research questions

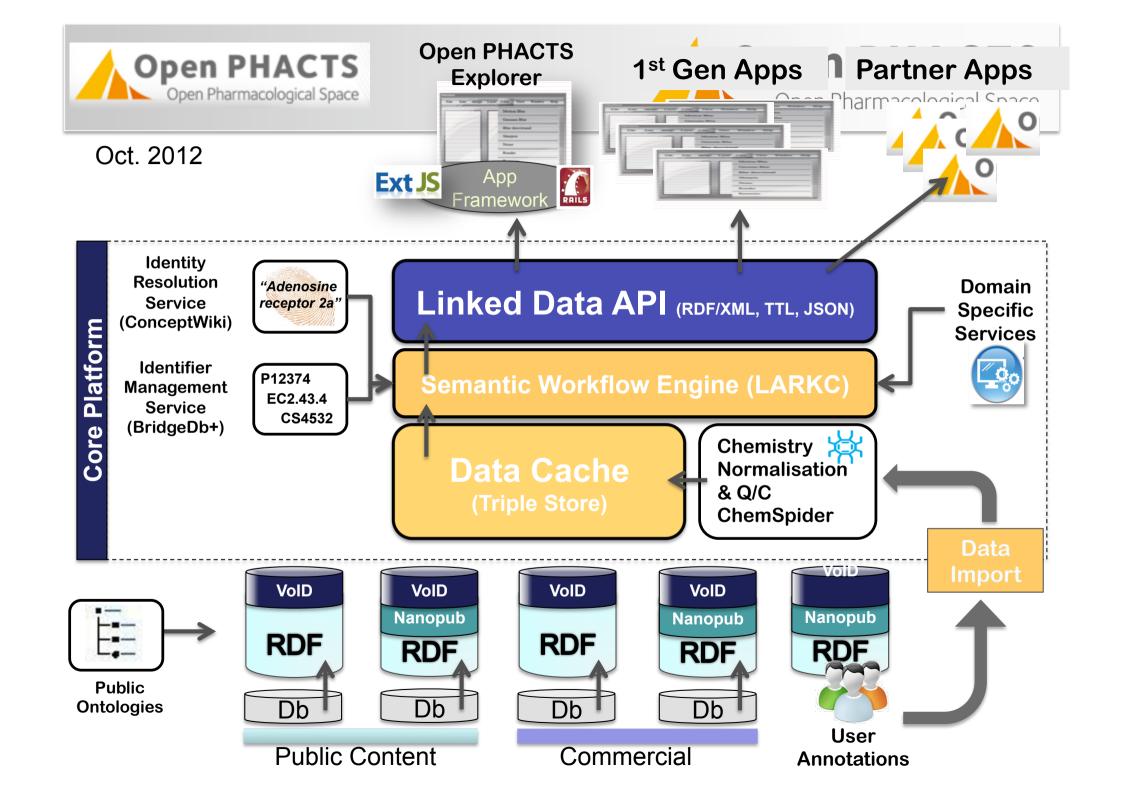

Question number	Question					
Cluster I						
Q1	Give me all oxidoreductase inhibitors active <100 nm in human and mouse					
Q2	Given compound X, what is its predicted secondary pharmacology? What are the on- and off-target safety concerns for a compound? What is the evidence and how reliable is that evidence (journal impact factor, KOL) for findings associated with a compound?					
Q3	Given a target, find me all actives against that target. Find/predict polypharmacology of actives. Determine ADMET profile of actives					
Q4	For a given interaction profile – give me similar compounds					
Q5	The current Factor Xa lead series is characterized by substructure X. Retrieve all bioactivity data in serine protease assays for molecules that contain substructure X					
Q6	A project is considering protein kinase C alpha (PRKCA) as a target. What are all the compounds known to modulate the target directly? What are the compounds that could modulate the target directly? I.e. return all compounds active in assays where the resolution is at least at the level of the target family (i.e. PKC) from structured assay databases and the literature					
Q7	Give me all active compounds on a given target with the relevant assay data					
Q8	Identify all known protein-protein interaction inhibitors					
Q9	For a given compound, give me the interaction profile with targets					
Q10	For a given compound, summarize all 'similar compounds' and their activities					
Q11	Retrieve all experimental and clinical data for a given list of compounds defined by their chemical structure (with options to match stereochemistry or not)					
Cluster II						
Q12	For my given compound, which targets have been patented in the context of Alzheimer's disease?					
Q13	Which ligands have been described for a particular target associated with transthyretin-related amyloidosis, what is their affinity for that target and how far are they advanced into preclinical/clinical phases, with links to publications/patents describing these interactions?					
Q14	Target druggability: compounds directed against target X have been tested in which indications? Which new targets have appeared recently in the patent literature for a disease? Has the target been screened against in AZ before? What information on in vitro or in vivo screens has already been performed on a compound?					
Q15	Which chemical series have been shown to be active against target X? Which new targets have been associated with disease Y? Which companies are working on target X or disease Y?					
Q16	Which compounds are known to be activators of targets that relate to Parkinson's disease or Alzheimer's disease					
Q17	For my specific target, which active compounds have been reported in the literature? What is also known about upstream and downstream targets?					
Q18	Compounds that agonize targets in pathway X assayed in only functional assays with a potency <1 μм					
Q19	Give me the compound(s) that hit most specifically the multiple targets in a given pathway (disease)					
Q20	For a given disease/indication, give me all targets in the pathway and all active compounds hitting them					

Data Associations

Drug Discovery Today • Volume 18, Numbers 17/18 • September 2013

REVIEWS




FIGURE 2

Network of data associations needed to answer the top-ranked scientific competency questions. The network reflects a cartoon that summarizes the data associations that are needed to target the top 20 research questions.

Public Data Sources

Statistics of Datasets Loaded into Open PHACTS Version 1.3

Source	Version	Supplier	Downloaded	Initial Records	Triples	Properties
Chembl	Chembl 16 RDF	EBI	25 June 2013	1,247,403 (~1,236,686 compounds, 9844 targets, 6243 target components, 873 protein classes)	304,420,681	77
DrugBank	Aug 2008	Bio2Rdf (www4.wiwiss.fu- berlin.de)	08 Aug 2012	19,628(~14,000 drugs, 5000 targets)	517,584	74
SwissProt, UniParc, UniRef	2013_06	SIB	2013_06		533,394,147	82
ENZYME	2013_07	SIB	2013_07	6,187	47,661	2
ChEBI	Release 104	EBI	19 June 2013	40,575	40,575	2
GeneOntology	Jan 21, 2013	GO	21 Jan 2013	38,137	1,265,273	26
GOA	2013	GO	09 Sept 2013	various species	23,489,501	15
WikiPathways	v0.? 1_20130710	Maastricht	10 July 2013	946	1,449,981	34
ChemSpider		Open PHACTS Chemistry Registry (OCRS)	Nov 11, 2013		tbc	
ConceptWiki	version 1.3	NBIC	09 Sept 2013	2,828,966	3,739,884	1

Example of vocabulary/ontology challenge

STANDARD UNITS

kJ m-2

COUNT (*)

		IC50	nM	829448
STANDARD TYPE	UNIT COU	IC50	ug.mL-1	41000
		IC50		38521
AC50	7	IC50	ug/ml	2038
Activity	421	IC50	ug ml-1	509
EC50	39	IC50	mg kg-1	295
IC50	46	IC50	molar ratio	178
ID50	42	IC50	ug	117
Ki	23	IC50	ଚ	113
Log IC50	4	IC50	uM well-1	52
Log Ki	7	IC50	p.p.m.	51
Potency	11	IC50	ppm	36
log IC50	0	IC50	uM-1	25
		IC50	nM kg-1	25
		IC50	milliequivalent	22

>5000 types

Implemented using the Quantities, Dimension, Units, Types Ontology (http://www.qudt.org/)

IC50

~ 100 units

20

Concept: nanopublications for provenance

Nanopublications – Capturing scientific information in

the Triple Store

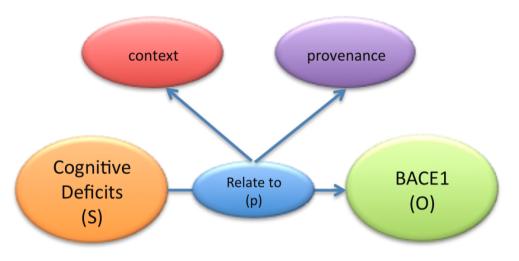
nature.com ▶ journal home ▶ archive ▶ issue ▶ commentary ▶ full text

NATURE GENETICS | COMMENTARY

The value of data

Barend Mons, Herman van Haagen, Christine Chichester, Peter-Bram 't Hoen, Johan T den Dunnen, Gertjan van Ommen, Erik van Mulligen, Bharat Singh, Rob Hooft, Marco Roos, Joel Hammond, Bruce Kiesel, Belinda Giardine, Jan Velterop, Paul Groth & Erik Schultes

Affiliations | Contributions | Corresponding author


Nature Genetics 43, 281–283 (2011) | doi:10.1038/ng0411-281

Nano-Publication in the e-science era

Barend Mons^{1,2,3} and Jan Velterop^{1,2},

¹ Concept Web Alliance, ² Netherlands BioInformatics Centre, ³ Leiden University Medical Center.

barend mons@nbic.nl, velterop@conceptweballiance.org

The Anatomy of a Nano-publication

Paul Groth

VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam, The Netherlands

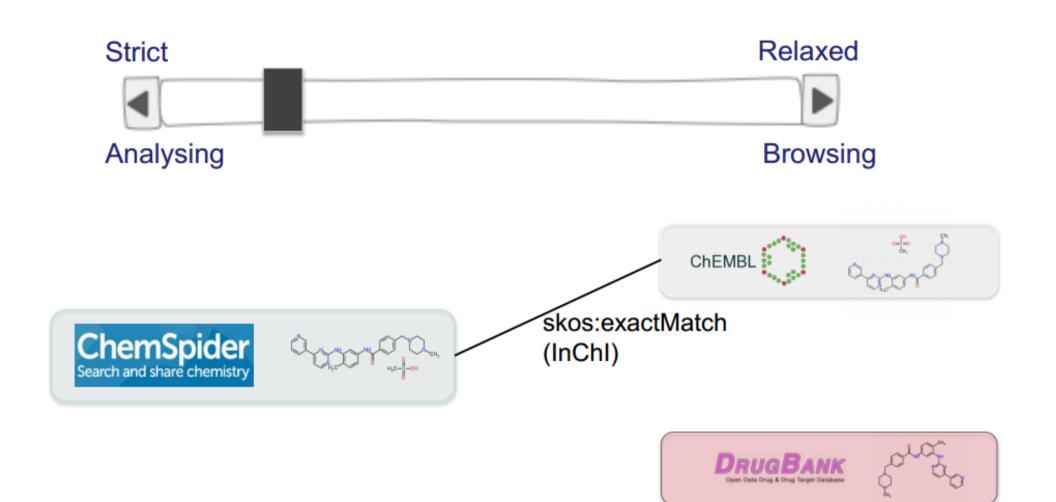
pgroth@few.∨u.nl ABSTRACT

Andrew Gibson

University of Amsterdam Nieuwe Achtergracht 166, C-712 1018 WV Amsterdam The Netherlands

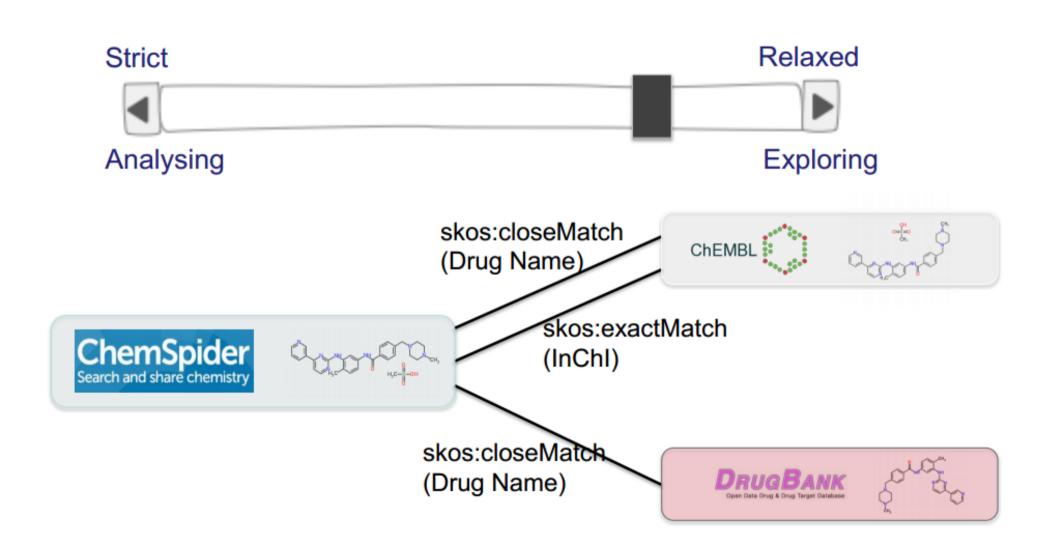
a.p.gibson@uva.nl

Johannes Velterop


Concept Web Alliance / NBIC 9 Benfleet Close Cobham, Surrey, KT11 2NR United Kingdom

jan.velterop@nbic.nl

Newer standards like RDFa also facilitate this and integrate with


Concept: Scientific lenses

Concept: Scientific lenses

Example applications

Browse and search the data within the Open PHACTS Discovery Platform.

Developed by the University of Manchester and University of Vienna

Allows the semantic enrichment of scientific articles in PDF format.

Developed by the University of Manchester

A KNIME repository of components and workflows has been developed.

> Open PHACTS - KNIME Community

Visualise the chemical and biological space of a molecule group in a chemically-aware manner.

Developed by the University of Hamburg and BioSolveIT GmbH

Intuitive predicts target pharmacology based on the Similar Ensemble Approach.

Developed by the Technical University of Denmark

Queries the Open PHACTS API from Microsoft's Excel spreadsheet software.

Developed by the University of Vienna

Navigate pharmacological space in a flexible and interactive way.

Poeveloped by the Consorci Mar Parc de Salut de Barcelona (PSMAR)

Connects the latest news and events in Pharma and Biotech directly to pharmacology data within the Open PHACTS platform.

F Developed by SciBite Limited

Extracts data to build QSAR predictive models with data from the eTOX project.

Developed by PSMAR as part of the eTOX project

A repository of useful Pipeline Pilot components and workflows has been developed.

Open PHACTS - Pipeline Pilot Community

Identifies significant entities in scientific text, and provides links to Open PHACTS Explorer.

✗ Developed by AQnowledge

Helium for Excel Community Edition contains three functions that use the Open PHACTS API.

▶ Developed by Ceiba Solutions

More complex use cases: Relating two distant concepts

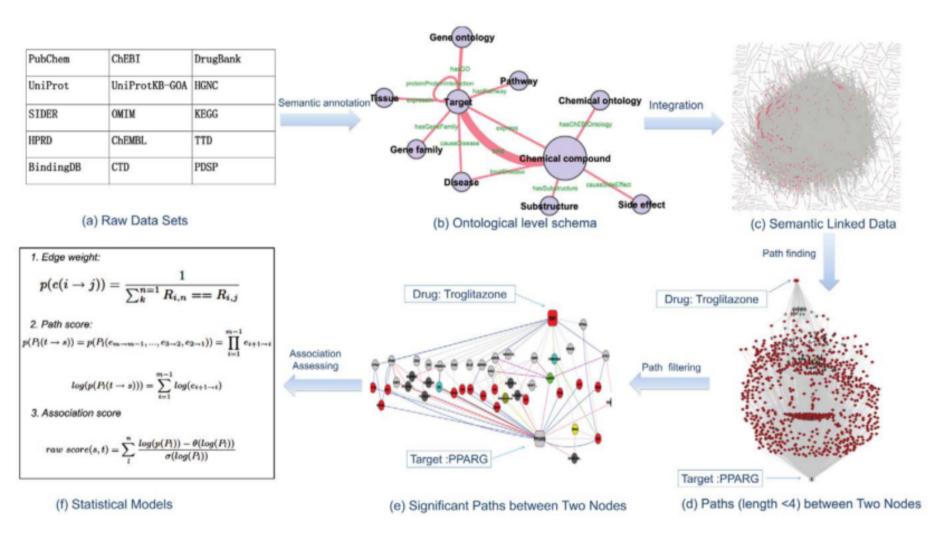


Figure 1. SLAP pipeline. An ontology is used to annotate public data sets and integrate them into a semantic linked network. Two nodes are linked by one or more number of paths, but only a small number of significant paths are kept for association estimation. The path significance and drug target associations are assessed by statistical models derived from random samples. doi:10.1371/journal.pcbi.1002574.g001

Developments

- Continue improving the system: features, performance, API calls, etc.
- Expand implementation of data sources based on new set of scientific use cases – Project received 2 years additional funding
- Development and improvement of new and existing applications that use the OpenPHACS API
- Set up organizational model to continue maintenance and development after IMI funding

Acknowledgments

The OpenPHACTS consortium

Play!

API: https://dev.openphacts.org/

