
Informatiemodellering met SHACL
Jan Voskuil

Jesse Bakker

© Copyright 2018 TopQuadrant Inc. Slide 2

Vandaag:

▪ Introductie

▪ SHACL Overview

▪ De rol van SHACL

▪ SHACL SPARQL

▪ SHACL Rules

© Copyright 2018 TopQuadrant Inc. Slide 3

RDF

RDFs SPARQL

OWL SHACL

© Copyright 2018 TopQuadrant Inc. Slide 4

Informatiemodellering

▪ Een informatiemodel is een beschrijving van
welke informatieobjecten er zijn en wat hun
structuur en betekenis is.
> https://wiki.nationaalarchief.nl/pagina/DUTO:Informatiemodel

© Copyright 2018 TopQuadrant Inc. Slide 5

Triniteit

Informatiemodel

Informatie-
objecten

StructuurBetekenis

© Copyright 2018 TopQuadrant Inc. Slide 6

SHACL Introduction

© Copyright 2018 TopQuadrant Inc. Slide 7

If you know OWL:
Familiar things you can do using with SHACL

▪ Specify cardinalities for a property when used with a
member of a class

– Also can do qualified cardinalities (owl:someValuesFrom =
min 1 QCR)

– Closed world meaning

▪ Specify a range of values for a property when used with
a member of a class

– Similar to owl:allValuesFrom, but closed world

▪ Combine restrictions (shapes) using logical operators

– “and” is assumed, by default

– or, not and xone are available

© Copyright 2018 TopQuadrant Inc. Slide 8

▪ Larger pre-built vocabulary for restricting
property values

– min/max, regex, node-kind

▪ Restricting property value based on the value of
another property

▪ Not limited to a direct property values – can use
paths just like in SPARQL

▪ Restricting resource itself

– Node-kind, URI, closed shape (with ignore list)

If you know OWL:
Some new things you can do using with SHACL

© Copyright 2018 TopQuadrant Inc. Slide 9

▪ De-activating – useful for re-use and testing

▪ Defining such restrictions (constraints) not just for
a member of a class - for a specific resource/some
other grouping of resources

▪ Extending – declaratively define your own
constraint types (components)

▪ Error messages, some UI generation support, etc.

If you know OWL:
More new things you can do using with SHACL

© Copyright 2018 TopQuadrant Inc. Slide 10

SHACL Terminology

▪ Targets (of a shape)

– determine what resources (or, more generally, RDF
graph nodes) are to be validated against a shape

– during the validation, targets are referred to as
”focus nodes”

▪ Node Shapes

– specify conditions a target node itself must comply
with

– used to group property shapes

© Copyright 2018 TopQuadrant Inc. Slide 11

SHACL Terminology – 2

▪ Property Shapes

– specify conditions that related nodes (property
values) must comply with

– for example:
• target nodes are all resources with type td:Person

• property shape says that the values of the td:birthDate property for
these resources must be dates that are less than 1/1/2018 and there
can be only one birth date per person

© Copyright 2018 TopQuadrant Inc. Slide 12

SHACL Terminology – 3

▪ Constraint Components

– predefined CCs in SHACL Core form “SHACL Core
vocabulary” e.g., sh:minCount, sh:datatype,
sh:pattern, etc.

– users can create new CCs – domain specific data
validation languages

▪ Shapes Graph, Data Graph
– These are “roles” – any graph can be declared to be a

shapes graph or a data graph

© Copyright 2018 TopQuadrant Inc. Slide 13

SHACL Terminology – 4

▪ Validation Report
– RDF graph with validation results

– SHACL includes a vocabulary for describing results

▪ SHACL Core
– Predefined constraint components

▪ SHACL SPARQL
– SPARQL constraints and SPARQL-based constraint components

▪ SHACL Advanced Features
– Functions, rules, extended targets

© Copyright 2018 TopQuadrant Inc. Slide 14

SHACL Targets, Nodes Shapes and
Property Shapes

© Copyright 2018 TopQuadrant Inc. Slide 15

Example Data Graph
@prefix example: <http://example.org/> .
@prefix td: <http://www.sandbox.com/training-data#> .
@prefix schema: <http://schema.org/> .

td:Alice a schema:Person .
td:Bob a schema:Student .
td:Jack a schema:Person .
td:Jill a schema:Teacher .
example:Bob a schema:Person .
schema:Student rdfs:subClassOf schema:Person .
td:Alice schema:givenName “Alice”;

schema:familyName “Jones”;
schema:knows example:Bob;
schema:birthDate 1942-05-03;
schema:worksFor td:TopQuadrant .

example:Bob schema:givenName “Bob”;
schema:familyName “Brown”.

td:Jack schema:givenName “Jack”;
schema:familyName “Smith” ;
schema:familyName “Jones”.

td:Jill schema:givenName 1 .

© Copyright 2018 TopQuadrant Inc. Slide 16

Node Shapes and Property Shapes - 1

▪ Node shapes are used to:

– Specify constraints on the ”target” nodes

– Group property shapes

▪ Property shapes are used to specify
constraints on nodes that are reached by
following some path from the target nodes

© Copyright 2018 TopQuadrant Inc. Slide 17

Node Shapes and Property Shapes - 2

schema:PersonShape a sh:NodeShape ;
sh:targetClass schema:Person ;
sh:pattern “^http://www.sandbox.com/training-data”;
sh:property [

sh:path schema:givenName ;
sh:minCount 1 ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:familyName ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:maxLength 20 ;

] .

Must specify at least one
schema:givenName and it

must be a string

Must specify only 1
schema:familyName which
is 20 characters or less in

length

Node Shape

© Copyright 2018 TopQuadrant Inc. Slide 18

Targets-1

▪ Define what nodes will be validated against a
shape

▪ Target statement determines scope of
applicability of a shape

– For example, all instances of schema:Person class

▪ We could also limit the shape to just a specific
resource (e.g., Alice):

schema:PersonShape a sh:NodeShape ;
sh:targetClass schema:Person .

schema:PersonShape a sh:NodeShape ;
sh:targetNode td:Alice .

© Copyright 2018 TopQuadrant Inc. Slide 19

Targets – 2

▪ Pre-built vocabulary for targets:

– sh:targetNode – targets are the specified resources

– sh:targetClass – targets are all resources that are
members of a specified class (or one of its sub
classes)

– sh:targetSubjectsOf – targets are all subjects of
triples with a given predicate

– sh:targetObjectsOf – targets are all objects of triples
with a given predicate

© Copyright 2018 TopQuadrant Inc. Slide 20

Targets – 3

▪ Implicit class targets

– If a node shape is also a class, it doesn’t need an
explicit sh:targetClass statement – integration point
for existing ontologies

▪ SPARQL-based targets

– Advanced feature

© Copyright 2018 TopQuadrant Inc. Slide 21

▪ When a class is also a node shape, it means
that targets of a shape are class members

schema:Person a sh:NodeShape ;
a owl:Class;

sh:pattern “^http://www.sandbox.com/training-data”;
sh:property [

sh:path schema:givenName ;
sh:minCount 1 ;
sh:datatype xsd:string ;] ;

sh:property [
sh:path schema:familyName ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:maxLength 20 ;] .

Implicit Targets

Applies to any member of
the schema:Person class

© Copyright 2018 TopQuadrant Inc. Slide 22

Targeting Specific Subjects or
Objects

▪ RDF triple: subject / predicate / object

▪ Shapes can target all resources that are
subjects or objects in triples with a specific
predicate or property

▪ Addressed by URIschema:WorksForShape a sh:NodeShape ;
sh:targetSubjectsOf schema:worksFor;
sh:pattern “^http://www.sandbox.com/training-data” ;
sh:property [

sh:path schema:worksFor ;
sh:minCount 1 ;
sh:maxCount 1 ;] .

All resources which have a
schema:worksFor must

have exactly 1

© Copyright 2018 TopQuadrant Inc. Slide 23

Closed Shapes

▪ By default, if we do not say anything about a property, then it can
have any value

▪ But, if there is sh:closed true, then properties that are not explicitly
mentioned (except the “ignored properties”) are not allowed

schema:ClosedPersonShape a sh:NodeShape ;
sh:targetClass schema:Person ;
sh:closed true;
sh:ignoredProperties (rdf:type) ;
sh:property [

sh:path schema:givenName ;
sh:minCount 1 ;
sh:datatype xsd:string ;] ;

sh:property [
sh:path schema:familyName ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:maxLength 20 ;] .

© Copyright 2018 TopQuadrant Inc. Slide 24

Property Shapes – 2

schema:PersonShape a sh:NodeShape ;
sh:targetClass schema:Person ;
sh:property [#b1

sh:path schema:givenName ;
sh:minCount 1 ;
sh:datatype xsd:string ;] ;

sh:property [#b2
sh:path schema:familyName ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:maxLength 20 ;] .

Node Shape

Property Shape

© Copyright 2018 TopQuadrant Inc. Slide 25

Property Shapes – 3

schema:PersonShape2 a sh:NodeShape ;
sh:targetClass schema:Person ;
sh:property td:Person-givenName ;
sh:property td:Person-familyName .

schema:Person-givenName a sh:PropertyShape ;
sh:path schema:givenName ;
sh:minCount 1 ;
sh:datatype xsd:string .

schema:Person-familyName a sh:PropertyShape ;
sh:path schema:familyName ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:maxLength 20 .

▪ Here we use URIs for the property shapes

▪ URIs can be addressed/extended from other
graphs

Node Shape

Property Shape

© Copyright 2018 TopQuadrant Inc. Slide 26

Summary of SHACL Core Constraint
Components

© Copyright 2018 TopQuadrant Inc. Slide 27

Constraint Components

▪ Value Type

▪ Value Range

▪ Cardinality

▪ String Values

▪ Property Pairs

▪ Logical Expressions

▪ Shape

▪ Qualified Value
Shapes

▪ Miscellaneous

© Copyright 2018 TopQuadrant Inc. Slide 28

Validation Report

© Copyright 2018 TopQuadrant Inc. Slide 29

Validation Report Vocabulary
▪ sh:conforms – true if no validation results were produced

▪ sh:result/sh:ValidationResult

▪ sh:focusNode – identifies a node that produced the results i.e., a
node that has problems

▪ sh:value – identifies what value is incorrect

▪ sh:resultPath – identifies how the incorrect value is connected to
the focus node

▪ sh:sourceShape – what shape has been violated

▪ sh:sourceConstraintComponent – what constraint component
has been violated

▪ sh:detail – further details

▪ sh:resultMessage – tools may use this to return helpful messages
to the users

▪ sh:resultSeverity

© Copyright 2018 TopQuadrant Inc. Slide 30

Path Expressions

© Copyright 2018 TopQuadrant Inc. Slide 31

Path Expressions - 1

▪ The value of sh:path can be a single predicate - or it
can be a property path

▪ SHACL supports a subset of SPARQL property paths.
Specifically:
– PredicatePath - simply the property

– InversePath – using inverse. We created inverse path for “children” in
exercise 2

– SequencePath – a sequential list of properties that used as a path

– AlternativePath – provides alternative paths. For example, rdfs:label or
skos:prefLabel must exist

– ZeroOrMorePath, OneOrMorePath and ZeroOrOnePath – using *, + and ?
operators in SPARQL

© Copyright 2018 TopQuadrant Inc. Slide 32

Different results demonstrate
SHACL’s use of rdf:type inferencing

td:Alice a schema:Person;

schema:knows example:Bob .

example:Bob a td:Student.

td:Student rdfs:subClassOf schema:Person .

schema:PersonKnows a sh:NodeShape ;
sh:targetClass schema:Person ;

sh:property [
sh:path (schema:knows rdf:type) ;
sh:hasValue schema:Person ;] .

schema:PersonKnows a sh:NodeShape ;
sh:targetClass schema:Person ;

sh:property [
sh:path schema:knows;
sh:class schema:Person ;] .

validnot valid

▪ Two ways to state “anyone a person knows must be a person”:
– One uses a property path of two predicates and sh:hasValue constraint

– Another. uses a single predicate path and sh:class constraint

© Copyright 2018 TopQuadrant Inc. Slide 33

De rol van SHACL

Informatiemodel

Informatie-
objecten

StructuurBetekenisSKOS

RDF(s) OWL

SHACL

© Copyright 2018 TopQuadrant Inc. Slide 34

Pano Maria, Jesse Bakker (SEMANT!CS2017)

© Copyright 2018 TopQuadrant Inc. Slide 35

SHACL als schema

© Copyright 2018 TopQuadrant Inc. Slide 36

SPARQL Constraint Component

© Copyright 2018 TopQuadrant Inc. Slide 37

SHACL SPARQL

▪ sh:SPARQLConstraintComponent

– a constraint component that can be used to
express restrictions on data based on a SPARQL
SELECT query

© Copyright 2018 TopQuadrant Inc. Slide 38

SPARQL Constraint Component
Example

ex:LanguageExampleShape a sh:NodeShape ;
sh:targetClass ex:Country ;
sh:sparql [

a sh:SPARQLConstraint ; # This triple is optional
sh:message "Values are literals with German language tag." ;
sh:prefixes ex: <http://example.com> ;
sh:select """ SELECT $this (ex:germanLabel AS ?path) ?value

WHERE {
$this ex:germanLabel ?value .
FILTER (!isLiteral(?value) || !langMatches(lang(?value), "de"))
} """ ;

] .

The target of this shape are all SHACL instances of ex:Country.

For those nodes (represented by the variable this), the SPARQL query

walks through the values of ex:germanLabel. For any value that is not a

literals or has a language tag that is not “de”, there is a validation result.

© Copyright 2018 TopQuadrant Inc. Slide 39

Other Types of Validators

▪ SPARQL queries is one option for validation

▪ JavaScript is another built-in option

▪ Validators in other languages could be
developed

Inferencing with SHACL

© Copyright 2018 TopQuadrant Inc. Slide 41

SHACL Inference Mechanisms

▪ Triple Rules

– Specify inferred statement as a triple

▪ SPARQL Rules

– Specify inferred statement as a SPARQL
CONSTRUCT query

▪ Property Values Extension

– Very similar to Triple Rules with some additional
“syntactic sugar”

– Specify inferred values as part of a property shape

– Support dynamic inferencing

© Copyright 2018 TopQuadrant Inc. Slide 42

Triple Rule Example: Inferring a new Type

ex:Rectangle a rdfs:Class, sh:NodeShape ;
rdfs:label "Rectangle" ;
sh:property [sh:path ex:height ;

sh:datatype xsd:integer ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name "height" ;] ;

sh:property [sh:path ex:width ;
sh:datatype xsd:integer ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name "width" ;] ;

sh:rule [a sh:TripleRule ;
sh:subject sh:this ;
sh:predicate rdf:type ;
sh:object ex:Square ;

sh:condition [sh:property [sh:path ex:width ; sh:equals ex:height ;
] ;] ;] .

Inferred
statement

sh:this means every focus
node of the shape that meets

conditions (if any)

What are the focus nodes of this shape?

© Copyright 2018 TopQuadrant Inc. Slide 43

SPARQL Rule Example – calculating area
ex:Rectangle a rdfs:Class, sh:NodeShape ;
rdfs:label "Rectangle" ;
sh:property [sh:path ex:height ;

sh:datatype xsd:integer ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name "height" ;] ;

sh:property [sh:path ex:width ;
sh:datatype xsd:integer ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name "width" ;] ;

sh:rule [a sh:SPARQLRule ;
sh:construct """ CONSTRUCT {$this ex:area ?area. }

WHERE { $this ex:width ?width .
$this ex:height ?height .

BIND (?width * ?height AS ?area) . } """ ;

sh:prefixes
[sh:declare

[sh:prefix "ex" ; sh:namespace "http://example.com/ns#"^^xsd:anyURI ;] ;] ;

[sh:declare
[sh:prefix "rdf" ; sh:namespace "http://www.w3.org/1999/02/22-rdf-syntax-ns#"^^xsd:anyURI ;] ;] ;

sh:condition ex:Rectangle ;
] .

sh:declare can also be stated at
the graph level. Then, refer to
the <base URI of the graph> in

the prefixes statement

Not needed, included only to show that
a condition can be specified

© Copyright 2018 TopQuadrant Inc. Slide 44

Area Calculation Using a Triple Rule

ex:RectangleRulesShape a sh:NodeShape ;
sh:targetClass ex:Rectangle ;
sh:rule [

a sh:TripleRule ;
sh:subject sh:this ;
sh:predicate ex:area ; # Computes the values of the ex:area property at the focus nodes
sh:object [

sparlq:multiply ([sh:path ex:width] [sh:path ex:height]) ;
] ;

sh:condition ex:RectangleShape ; # Rule only applies to Rectangles that conform to
ex:RectangleShape. In other words have exactly one width and height and the values of these are
integers.

] .

ex:RectangleShape a sh:NodeShape ;
sh:targetClass ex:Rectangle ;
sh:property [sh:path ex:width ; sh:datatype xsd:integer ; sh:minCount 1 ; sh:maxCount 1 ;] ;
sh:property [sh:path ex:height ; sh:datatype xsd:integer ; sh:minCount 1 ; sh:maxCount 1 ;] .

Uses a SHACL function. Users can define
functions themselves. A useful collection of

functions is available in the sparql:
namespace at http://datashapes.org/sparql

As an example, we are doing this slightly
differently – with an explicit target. Plus we
have separated the shape with a rule from

the shape that defines properties

© Copyright 2018 TopQuadrant Inc. Slide 45

Triple Rules vs SPARQL Rules

▪ Triple Rules are declarative, making it easier for an engine to
understand and thus optimize its use cases

▪ Triple Rules can produce multiple triples for the same
subject/predicate

▪ Recommendation is, when possible, to use Triple Rules
rather than SPARQL Rules.

▪ The downside: when one needs to infer values for more
than one property (sh:predicate), it will require a rule per
property.

© Copyright 2018 TopQuadrant Inc. Slide 46

Example of using Property Values:
Inferring Children using Parents

schema:Person
sh:property [

sh:path schema:children ;
sh:class schema:Person ;
sh:values [

sh:path [
sh:inversePath schema:parent ;
]

]
] .

▪ Values of schema:children will be inferred using inverse of the values of
schema:parent

▪ If we did a triple rule, we would have said the following at the NodeShape:

sh:rule [a sh:TripleRule ;

sh:subject sh:this ;

sh:predicate schema:children;

sh:object [sh:path [sh:inversePath schema:parent;] ;] ;] .

▪ Here, we are only specifying the object, so this is a less verbose option

© Copyright 2018 TopQuadrant Inc. Slide 47

Default Values

▪ sh:defaultValue – will make the same
inferences as sh:values, but only if the
property has no values

▪ Population ”by default”

▪ If a values is added, inference does not
happen – default is overridden by the value

